Comparison of K-Means and Two-Step Cluster Analysis Methods for Clustering COVID-19 Data

نویسندگان

چکیده

This study compares the K-Means and two-step cluster analysis methods for clustering COVID-19 data. The dataset had 1,893,941 cumulative cases from January 2020 to October 2021. K-means resulted in eight clusters, while three grouped by nationality, occupation, patient type, risk group. These clusters were categorized based on age, gender, region of infection. Group 1 5,883 workers infected community settings, 2 7,420 foreign migrant industrial settings or through direct contact with patients, 3 6,870 indirect transmission. recommends targeted interventions continued monitoring evaluation clusters. findings can help improve government policies, medical facilities, treatment

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranking and Clustering Iranian Provinces Based on COVID-19 Spread: K-Means Cluster Analysis

Introduction: The Coronavirus has crossed geographical borders. This study was performed to rank and cluster Iranian provinces based on coronavirus disease (COVID-19) recorded cases from February 19 to March 22, 2020. Materials and Methods: This cross-sectional study was conducted in 31 provinces of Iran using the daily number of confirmed cases. Cumulative Frequency (CF) and Adjusted CF (ACF)...

متن کامل

Cluster Analysis Using Rough Clustering and k-Means Clustering

IntroductIon Cluster analysis is a fundamental data reduction technique used in the physical and social sciences. It is of potential interest to managers in Information Science, as it can be used to identify user needs though segmenting users such as Web site visitors. In addition, the theory of Rough sets is the subject of intense interest in computational intelligence research. The extension ...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Comparative Analysis of k-means and Enhanced K-means clustering algorithm for data mining

IJSER © 2012 http://www.ijser.org Comparative Analysis of k-means and Enhanced K-means clustering algorithm for data mining Neha Aggarwal,Kirti Aggarwal, Kanika gupta ABSTRACT-K-Means Clustering is an immensely popular clustering algorithm for data mining which partitions data into different clusters on the basis of similarity between the data points and aims at maximizing the intra-class simi...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of membrane science and technology

سال: 2023

ISSN: ['2410-1869']

DOI: https://doi.org/10.15379/ijmst.v10i2.1203